Ergebnisse der Sicherheitsforschung

Pilzresistente Gerste - Keine Auswirkungen auf nützliche Pilze

Gentechnisch veränderte Gerste, die durch neu eingeführte Gene widerstandsfähig gegenüber schädlichen Pilzen ist, wirkt sich nicht negativ auf nützliche Pilze und damit auf das Pflanzenwachstum aus. Zudem zeigte sich, dass eine gezielte gentechnische Veränderung Pflanzen weit weniger beeinflusst als klassische Züchtung oder Umwelteinflüsse. So die Ergebnisse mehrjähriger Untersuchungen an der Universität Gießen. Von 2005 bis 2010 wurden im Rahmen der biologischen Sicherheitsforschung zwei gentechnisch veränderte Gerstenlinien in Freiland, Gewächshaus und Labor getestet. BioSicherheit sprach mit Karl-Heinz Kogel von der Universität Gießen.

„Ein Ergebnis ist, dass auch gentechnisch veränderte Pflanzen von nützlichen Mykorrhiza-Pilzen besiedelt werden.“ Prof. Karl-Heinz-Kogel, Institut für Phytopathologie und Angewandte Zoologie (IPAZ) der Justus-Liebig-Universität Gießen, im Gespräch mit bioSicherheit

Gerste im Freilandversuch unter einem Sicherheitsnetz. Erhebliche Teile der Freisetzungsfläche wurden mehrfach durch Gentechnikgegner zerstört.

Gerstepflanzen im Labor

Kleine Gerstenpflanzen auf Nährlösung

Gerstenpflanzen im Gewächshaus

Gerste im Gewächshaus

Gerstepflanze im Gewächshaus

Gerste bildet selbst „von Natur aus“ Glukanasen und Chitinasen. Die entsprechenden Gene werden aber während der pflanzlichen Entwicklung zu spät aktiviert, so dass die pflanzliche Abwehr nicht ausreicht, um die Schädlinge rechtzeitig angreifen können. Gene für pflanzeneigene Glukanasen aus der Gerste sind aber bereits in andere Organismen wie etwa in Wein eingebracht worden, um bei diesen eine Pilzresistenz zu erreichen.

Mykorrhiza

Das Hyphengeflecht der nützlichen Mykorrhizapilze wird unter dem Mikroskop durch Anfärbetechniken sichtbar gemacht.

Mykorrhiza

Pilzinfektionen insbesondere Fusarienpilze sind im Getreideanbau ein häufiges Problem. Einige Fusarien-Arten bilden hochgiftige Stoffwechselprodukte, so genannte Mykotoxine, die sich mit dem Erntegut vermischen und etwa bei Futtermitteln und auch in der Bierbrauerei große Probleme bereiten können. Im Vergleich zu Weizen, Hafer oder Mais ist Gerste allerdings weniger anfällig.

Zwei vom BMBF geförderte Projekte der Sicherheitsforschung haben sich mit gentechnisch veränderter Gerste beschäftigt, die eine erhöhte Widerstandsfähigkeit gegenüber Pilzen besitzt. Diese Gerstenlinien wurden an der Washington State University entwickelt und in den USA bereits im Freiland geprüft.

Es wurden zwei Gerstenlinien untersucht:

  • In eine der beiden Linien wurde ein Gen übertragen, das aus einem Bodenpilz (Trichoderma harzianum) stammt und eine Chitinase bildet. Dieser Pilz wird seit vielen Jahren im biologischen Pflanzenschutz eingesetzt. Chitinasen bauen Chitin ab, das ebenfalls ein Bestandteil der Zellwände von Pilzen ist.
  • In die zweite Linie wurde ein Gen aus einem Bodenbakterium (Bacillus amyloliquefaciens) eingebracht, das Glukanase bildet. Das Gen wurde in Gerste übertragen, um die Braueigenschaften zu verbessern sowie auch eine bessere Verdaulichkeit als Tierfutter zu erreichen. Glukanase hat zugleich aber auch pilzresistente Eigenschaften - es zerstört bestimmte Pilze.

In einem der Forschungsprojekte wurde untersucht, ob durch die Bildung der Chitin und Glukan abbauenden Enzyme auch nützlich Pilze geschädigt werden. 70 bis 80 Prozent der Landpflanzen leben in Symbiose mit so genannten Mykorrhiza-Pilzen, wobei Pflanze und Pilz sich gegenseitig von Nutzen sind. Der Pilz versorgt die Pflanze mit Nährstoffen wie Phosphat, die Pflanze bietet dem Pilz einen geschützten Lebensraum und versorgt ihn darüber hinaus mit Kohlenhydraten.

In mehrjährigen Versuchen in Gewächshaus und Freiland zeigten sich keine Unterschiede zwischen transgenen und nicht-transgenen Gerstenpflanzen in der Besiedlung durch nützlich Mykorrhiza-Pilze. Im Labor wurde mit Hilfe molekularer Analysen die Menge der Mykorrhiza-Pilze in den Wurzeln genau erfasst. Um zu überprüfen, ob diese Pilze auch in den gentechnisch veränderten Pflanzen weiterhin funktional sind, d.h. das Pflanzenwachstum unterstützen, wurden unter dem Mikroskop die Pilzorgane untersucht. Es zeigte sich, dass die Ausbildung der Hyphengeflechte und der Nährzellen (Arbuskeln) durch die gentechnische Veränderung nicht beeinflusst wurde.

Ein weiteres Projekt beschäftigte sich mit der Frage, ob die Bildung der beiden gegen Pilzinfektionen zielenden Enzyme in der Pflanze andere unerwünschte Auswirkungen auf Pflanzeneigenschaften und Inhaltsstoffe haben könnte. Hierbei stellte sich heraus, dass die gentechnische Veränderung der Gerste nur minimale Veränderungen in der Genaktivität und der stofflichen Zusammensetzung der Pflanzen bewirkt. Der Unterschied zwischen den beiden konventionellen Ausgangssorten war erheblich viel größer, als der zwischen transgener Gerste und der jeweiligen Elternsorte.

Außerdem zeigte sich, dass eine Besiedlung mit Mykorrhiza-Pilzen die Stoffzusammensetzung der Gerstenpflanzen in hohem Maße verändert - unabhängig davon, ob es sich um transgene oder nicht-transgene Gerste handelt.

Die Ergebnisse machen deutlich, dass klassische Züchtung und Umwelteinflüsse wie Pilzbefall (z.B. Mykorrhizierung) Kulturpflanzen in erheblich stärkerem Umfang verändern als das gezielte gentechnische Hinzufügen eines einzelnen Gens.